INGI 2315 - Group INFO 4

Project report :
DHCP Relay on PIC 18F97J60

Laurent Lamouline - 3597-05-00
Vincent Nuttin - 5772-05-00

May 21, 2010
Contents
1 DHCP : How does it work 7 2
1.1 The protocol e e 2
1.2 Witharelay. o o e 3
2 Description of our model (ASG) 4
3 Implementation on the PIC 5
4 In practice 7
4.1 Our working environment L 7
4.2 Running illustrations L oL L L 8
Conclusion 10
A Annex : Modified files 11

B Annex : Code of DHCPr.c 11

Introduction

For this project, we were asked to implement a DHCP Relay on a PIC 18F97J60 !.

This report presents the result of our work about that. First, we will explain a little
bit how DHCP works, the protocol in general and its behaviour when a relay is present
in a network. After that, we will present our model done in ASG and explain why it has
been useful during the implementation phase. In addition to that, we will continue with
our implementation in C on the PIC and some explanations about the transition between
ASG and the C code. Finally, there will be a small description of our working environment
and some illustrations of the application running on our PIC.

The appendix of the report contains the source code of the most important
file : DCHPr.c. Some other pieces of code are also presented throughout this report.

We wish you a pleasant reading.

1http ://www.microchip.com/wwwproducts/Devices.aspx?dDocName=en026439

http://www.microchip.com/wwwproducts/Devices.aspx?dDocName=en026439

1 DHCP : How does it work ?

1.1 The protocol

DHCEP is a protocol used by hosts (DHCP clients) to retrieve IP address assignments.
It uses a client-server architecture. DHCP uses the same two ports assigned by TANA for
BOOTP: 67/udp for sending data to the server, and 68/udp for data to the client. You
can see a typical DHCP packet (with each field) in the figure just below (Figure 1).

UDP Src=0.0.0.0 sPort=68
Dest=255.255.255.255 dPort=67

OP HTYPE HLEN HOPS
0x01 0x01 006 000
XID
0x3903F326
SECS FLAGS
00000 00000
CIADDR
000000000
YIADDR
000000000
SIADDR
000000000
GIADDR
000000000
CHADDR
0:00053C04
080590000
000000000
000000000
192 octets of 0's. BOOTF legacy
Magic Cookie
0x63825363

DHCP Options
DHCP option 53: DHCP Discover
DHCP option 50: 192.168.1.100 requested
DHCP option 55: Parameter Request List:

Request Subnet Mask (1), Router (3), Domain Mame (15),

Domain Name Server (6)

Figure 1: DHCP Discovery

DHCP process is divided in four oper-
ations :

e [P discovery : The client broadcasts

messages to discover available DHCP
servers. A DHCP client can also re-
quest its last-known IP address.

IP lease offer : When a DHCP server
receives an [P discovery from a client,
it reserves an IP address for the client
and send a DHCP OFFER message to
this client. This message contains the
client’s MAC address, the IP address
that the server is offering, the subnet
mask, the lease duration, and the IP
address of the DHCP server making
the offer. The proposed IP address
is specified in the YIADDR (Your IP
Address) field.

IP request : A client can receive
DHCP offers from multiple servers,
but it will accept only one DHCP of-
fer and broadcast a DHCP request
message. Based on the Transaction
ID field in the request, servers are in-
formed whose offer the client has ac-
cepted. When other DHCP servers
receive this message, they withdraw
any offers that they might have made
to the client and return the offered
address to the pool of available ad-
dresses. DHCP request message is
broadcast because the DHCP client
has still not received any IP and
hence it cannot unicast the request.

IP lease acknowledgement : When
the DHCP server receives the DHCP
REQUEST message from the client, the
configuration process enters its final

phase. The acknowledgement phase involves sending a DHCP ACK packet to the client.
This packet includes the lease duration and any other configuration information that
the client might have requested. At this point, the IP configuration process is com-
pleted 2.

The DHCP protocol also provide some options. Each option has a specific length. In
this project, we used some of them but especially ”Message Type (53)” and ”Requested
IP (50)”.

The aim of the section is not to describe DHCP deeply so for further information, we
recommend you to read the following websites :

e http://www.networksorcery.com/enp/protocol/dhcp.htm

e http://en.wikipedia.org/wiki/Dynamic_Host_Configuration_Protocol

1.2 With a relay

A DHCP relay is an host configured with a static IP address and knows the DHCP
server address. It listens to the port 67 for clients requests and to the port 68 for server
answers. Its role is to forward packets coming from the client (resp. server) to the server
(resp. client). The main difference is that when a client makes a DHCP discovery in
broadcast, it is intercepted by the relay. The relay knows the IP address of the server but
it still needs to make an ARP request to know its MAC address to be able to forward the
packet in unicast to this latter. When it forwards the packet, it adds its own IP address in
the GIADDR field. The server can then send a DHCP OFFER with a proposal for the client,
in unicast, to the relay. When the client has received the offer, it then sends in broadcast
a DHCP request with the IP it chose. This packet is intercepted by the DHCP relay
anew so that it can send it to the server in unicast. Finally, the server sends the DHCP
acknowledgement in unicast to the relay. A client always communicates in broadcast with
the relay and the relay sends its messages in unicast to the server. In the next section,
you will see how all these components are connected to each other.

’http://en.wikipedia.org/wiki/Dynamic_Host_Configuration_Protocol

http://www.networksorcery.com/enp/protocol/dhcp.htm
http://en.wikipedia.org/wiki/Dynamic_Host_Configuration_Protocol
http://en.wikipedia.org/wiki/Dynamic_Host_Configuration_Protocol

2 Description of our model (ASG)

In order to have a working base, we build an ASG (Asynchronous State Graph) model.
This model represents the state machine we will use in our relay. To design this model, we
use the concepts of parallelism, transitions with and without condition, and rendez-vous.

DHCPRelay
Composante 1 Composante 2
WaitingForTrafic Idle

Action: ListenToChannel

r T

ReceivingRequest ReceivingAnswer

N / TrasmitReqNeeded | | TransmitAnsNeeded

RequestReceived AnswerReceived

ARF Req ARP Ans Action: ProcessingSendAns
Action: ProcessingRequest Action: ProcessingAnswer
Send)

ReqReady AnSReady Action: ProcessingSendReq
SendReqToDHCP SendAnsToClient
| ——— —_— |

Figure 2: ASG Model

As you can see, there are two main parts. The first component (on the left) is the
part that processes the packets received on the Ethernet buffer. The first state waits for
incoming traffic. When a packet arrives, we look at the fields (OP) (shown in Figure 1)
to determine whether the packet is coming from a (new) client or from the server. If the
packet is identified as coming from a client, we forward it to the server in unicast mode.
On the other hand, if the packet is identified as coming from the server, we forward it
to the related client thank to its MAC address in the CHADDR field. These two conditions
bring us to new states which lead to some ”rendez-vous” points with the other part of
the model. They are called ”SendReqToDHCP” and ”SendAnsToClient”. As you can see,
theses ”rendez-vous” are on both components (on the left: inside a state; on the right: as
condition on transition). When the left side’s process is inside one of these states (bottom
most), the transition on the right part is triggered and the execution can continue.

The second part (on the right) is the one that sends the packets to some destination
(in broadcast mode when we want to contact a client; in unicast mode when we contact
the server). When we have to contact the server, we don’t directly have its MAC address
so we need to perform an ARP request.

On both sides, you can observe unconditional transitions from the bottom to the top.
These transitions are there to ensure the state machine to run as long as there are packets
to process.

3 Implementation on the PIC

In this part, we will explain how we have translated our ASG model into C code, how
we have implemented some stuff like state machines, rendez-vous, etc.

e The main method is located in MainDemo.c. First, this method initialises the board.
Then, it contains an infinite loop :

Listing 1: MainDemo.c

while (1){

// This tasks tinvokes each of the core stack application tasks
StackApplications(); // LV : Triggering DHCPRelayTask ()

} }};nd of while (1)

e Then, in StackApplications (), we use the constants predefined for a DHCP server
on the PIC to activate our relay. Thank to this, we are sure that we have all the
stuff (sockets, data-structures, ...) to perform this properly.

Listing 2: StackTsk.c

#if defined (STACK_USE_DHCP_SERVER)

//DHCPServerTask (); // LV : Using relay instead of server !
DHCPRelayTask (); // Our task ! :-)

#endif

e Finally, we implemented DHCPRelayTask () in a new file called DHCPr. c (see code in
Appendix B).

Cooperative multitasking loop scheduling

As we saw in INGI 2315, the cooperative multitasking loop scheduling can be imple-
mented with an infinite loop including a series of calls to functions corresponding to the
different tasks. It is exactly what is done in the previous files we talked about (List-
ings 1 and 2).

State machines

Concerning the state machines, we implemented them with some switch/case oper-
ations. Here is a small piece of code to show you how it works :

Listing 3: DHCPr.c

switch(SMState){
case SM_IDLE:
break;

case SM_ARP_SEND_QUERY:

SMState = SM_ARP_GET_RESPONSE;
break;

case SM_ARP_GET_RESPONSE:

SMState = SM_MESS_SEND;
// No break;

case SM_MESS_SEND:

SMState = SM_IDLE;
break;

default:
return;

Rendez-vous

The "rendez-vous” is supposed to be implemented by another infinite loop in which a
condition is checked to know if the "rendez-vous” point is reached or not. In our case, we
had to integrate our concept into an already existing code, so instead of launching another
separate task, we choose to trigger the send by a simple method call (UDPFlush()). This
solution seems to be easier and as effective as the "rendez-vous”. We could have done this
with an infinite loop but this loop would have directly called UDPFlush(). By this little
explanation, we mean we felt it was more efficient to call this method without spending
resources to new (little and not mandatory) task.

4 In practice

4.1 Owur working environment

In this part of the report, we want to briefly introduce our working environment and
how you can use our relay. You must have the four following things :

e a PIC 18F97J60,
e a router (type TrendNet TW100-S4AWW1CA),
e a DHCP server,

e a client (any computer).

On the PIC, you have to install our relay software. On the router, you have to disable
the intern DHCP server (enable by default). After that, you have to configure a virtual
server on the LAN. More specifically, you have to say to the router that every UDP packet
received on its WAN interface going to the port 67 will be redirected to 192.168.8.2, the
static IP address of the PIC. Finally, you have to configure the router’s IP addresses as
on the figure below (Figure 3).

On the DHCP server, you only have to configure its IP address (Figure 3).

Lan:192.168.8.1/ 24

Router | . o> 16812 /24

e i

Client \

192.168.1.1
DHCP

192.168.8.2

PIC

Figure 3: IP addresses

Thank to this configuration, the connexions on the router must be something like that :

You are now able to use our DHCP relay.

TIP :
In order to be sure that the server and the router are working properly, you can try to
"ping” the DHCP server (on 192.168.1.1) by pushing the BUTTONO :

4.2 Running illustrations

We want to show you some illustrations, print-screens and remarks about our solution.
Here is a print-screen on the client side :

Filter: |udp.port == 67 || udp.port == 68 | = | Expression.. Clear Apply

No. . Time Source Destination Protocol Info

8] Discover - Tramnsaction Ox43at90as

51 2.497305 0.0.0.0 255.255.255.255 DHCP DHCP Discover - Transaction ID Ox43af9oas

61 4.386091 192.168.8.2 255255255255 DHCP DHCP offer - Transaction ID Ox43af90as

62 4.386352 0:0.0.0 255.255.255.255 DHCP DHCP Request - Transaction ID Ox43af90as

108 8.536440 a.0.0.0 255.255.255.255 DHCP DHCP Request - Transaction ID Ox43af90a5
111 8. 596995 192.168.8.2 255.255.255.255 DHCP DHCP ACK - Transaction ID Ox43af90as

Figure 4: Capture of the client

Remarks : We can see that the client sends two DISCOVER messages. The reason is
simple. Our relay does not treat its request fast enough so the client will say it again. The
same reason can be invoked for the duplicate REQUEST messages.

Now, here is a print screen of the server side :

thp.port == 67 || udp.port == 68 || arp || icmp w

e oy

No. Time Source . Destination Protocol . Info. _
10 3.694563 00:73:44:69:19:6C Broadcast ARP Gratuitous ARP for 192.168.1.2 (Request)
11 3.697336 B0:73:44:69:19:6¢C Broadcast ARP Gratuitous ARP for 192.168.1.2 (Reguest)
13 6.860560 00:73:44:69:19:6¢C Broadcast ARP Who has 192.168.1.17 Tell 192.168.1.2
14 6.860597 QuantaCo 96:3d:ea 00:73:44:69:19:6¢C ARP 192.168.1.1 is at 09:16:36:96:3d:ea
15 6.860989 192.168.1.2 192.168.1.1 DHCP DHCP Discover - Transaction ID ©x83a88020
16 6.861498 192.168.1.1 192.168.8.11 ICMP Echo (ping) request
17 7.772188 192.168.1.1 192.168.1.2 DHCP DHCP Offer - Transaction ID ©x83a88020
19 11.860034 QuantaCo 96:3d:ea 00:73:44:69:19:6¢C ARP Who has 192.168.1.27 Tell 192.168.1.1
20 11.860334 B0:73:44:69:19:6¢C QuantaCo 96:3d:ea ARP 192.168.1.2 is at 08:73:44:69:19:6C
21 12.883384 192.168.1.2 182.168.1.1 DHCP DHCP Request - Transaction ID 8x83a88028
22 12.953836 192.168.1.1 192.168:.1.2 DHCP DHCP ACK - Transaction ID ©x83a88020

Figure 5: Capture of the server

Remarks : As you can see, even if the client has sent multiple discovery messages,
only one message per client arrives at the server. You can also see the ARP request done
by the PIC in order to contact the server for the first time. Another thing to mention is
the fact that, when the server received the DHCP DISCOVERY message and wants to make
an offer with address P, it performs a ping request to this address P in order to check if
someone already owns it.

To conclude this part, you can see the different messages passing through our relay via
the little LCD screen on the PIC. Here is an example of messages :

© = -

(‘ Phvy =SSR T — e B L LB LR EL L Y

(c) DHCP Request (d) DHCP Ack

Figure 6: Messages on the LCD

Conclusion

It is important to begin the work with some technical and theoretical terms in order
to build a model. Thank to the ASG tool, the design of our small DHCP system has been
made easier. This helps us to begin with a more general approach that has been deepen
as long as we refine the model. The implementation is then easier, because it is based on
a concrete model and the way to convert ASG concepts into a programming language is
known.

We do not claim that our solution is the best one because we are sure that there are
many better ways to deal with incoming packets in the Ethernet buffer of the PIC 18,
better ways to forward packets but, we think that the solution we propose is acceptable
regarding to the objectives of the course. We learned a lot on modelling systems and on
programming on real-time machines.

10

A Annex : Modified files

We mainly used the package "IPonPIC” from Microchip to develop our relay. Here is
a list of the files that have been modified

e MainDemo.c = In method InitAppConfig

StackTsk.c = In method StackApplications

DHCPr.c = New file

TCPIPConfig.h = Add some new entries

e PingDemo.c = In method PingDemo

B Annex : Code of DHCPr.c

/K KKK KKK KKK KKK KKK KKK KKK KKK KKK KK KK KK KK KKK KKK KKK KK K KK K KK KKK K KK K KK
*
* Dynamic Host Configuration Protocol (DHCP) Relay
* Module for Microchip TCP/IP Stack
*

KKK KA KK KKK KK K KKK Kk kK K K K K K K K K K K K K K K K K K K Kk
* FileName: DHCPr . c

* Processor: PIC18, PIC24F, PIC24H, dsPIC30F, dsPIC33F, PIC32
* Compiler: sdcc

* Company: UCLouvatin.be - EPL 2010

*

* Author Date Comment

* Lamouline Laurent

* Nuttin Vincent 05/15/10 Original

KKK KKK KKK KKK KKK KKK KKK KKK KKK KKK KKK KKK KKK KKK KKKKKK KKK KKK KKK KKK K]
#define __DHCPS_C

#define __18F97J60

#define SDCC

#include <pic18£f973j60.h> //ML

#include "../Include/TCPIPConfig.h"

#if defined (STACK_USE_DHCP_SERVER)
#include "../Include/TCPIP_Stack/TCPIP.h"

static union
{
union
{
//ML ROM BYTE *szROM;
BYTE *szRAM;
} RemoteHost;
NODE_INFO DHCPRemote;
} StaticVars;

static enum
{
SM_IDLE = O,
SM_ARP_SEND_QUERY ,
SM_ARP_GET_RESPONSE ,
SM_MESS_SEND
} SMState = SM_ARP_SEND_QUERY;

int counter = -1; // LV debug

11

IP_ADDR ReqlIP;
int reqIPnonNull = O0;

static UDP_SOCKET MySocket; // Socket used by DHCP Server

static UDP_SOCKET MySocket2; // Socket used by DHCP Client

static IP_ADDR DHCPNextLease; // IP Address to provide for next lease

BOOL bDHCPRelayEnabled = TRUE; // Whether or mot the DHCP server 1is
enabled

static void ForwardToServer (BOOTP_HEADER *Header, int type);
static void ForwardToClient (BOOTP_HEADER *Header, int type);

R i I I I I I Il IITIIIT
Function:
void DHCPRelayTask (void)

Summary :
Performs periodic DHCP relay tasks.

Description:
This function performs any pertiodic tasks requied by the DHCP relay
module, such as forwarding DHCP messages.

Precondition:
None

Parameters:
None

Returns:
None
KooK KKK K K KK K K K K K K K Ok K K K K K K K K K oK ok K K K K Kk K K K KK K K K K KOk KK K K Kk K K K K Kk kK KKK K
void DHCPRelayTask (void)

{
BYTE i;
BYTE Option, Len;
BOOTP_HEADER BOOTPHeader;
DWORD dw;
BOOL bAccept;
static enum
{

DHCP_OPEN_SOCKET ,
DHCP_LISTEN
} smDHCPServer = DHCP_OPEN_SOCKET;

#if defined (STACK_USE_DHCP_CLIENT)
// Make sure we don’t clobber anyone else’s DHCP server
if (DHCPIsServerDetected (0))
return;
#endif

if (! bDHCPRelayEnabled)
return;
/% DHCP State Machine */
switch (smDHCPServer)
{
case DHCP_OPEN_SOCKET:
// Obtain a UDP socket to listen/transmit on
MySocket = UDPOpen (DHCP_SERVER_PORT, NULL, DHCP_CLIENT_PORT);
MySocket2 = UDPDpen(DHCP_CLIENT_PORT, NULL, DHCP_SERVER_PORT);

if (MySocket == INVALID_UDP_SOCKET || MySocket2 == INVALID_UDP_SOCKET){
DisplayString (0,"Invalid socket");
break;

}

// Decide which address to lease out

// Note that this mneeds to be changed if we are to

// support more than one lease

DHCPNextLease.Val = (AppConfig.MyIPAddr.Val & AppConfig.MyMask.Val) + O
x02000000;

if (DHCPNextLease.v[3] == 255u)

12

DHCPNextLease.v[3] += 0x03;
if (DHCPNextLease.v[3] == Ou)
DHCPNextLease.v[3] += 0x02;

smDHCPServer++;

case DHCP_LISTEN:
// Check to see if a walid DHCP packet has arrived
if (UDPIsGetReady (MySocket) < 241u)
break;
counter ++;
// DisplayWORD (counter, counter);
// Retrieve the BOOTP header
UDPGetArray ((BYTE*) &BOOTPHeader , sizeof (BOOTPHeader));

bAccept = (BOOTPHeader.ClientIP.Val == DHCPNextLease.Val) || (BOOTPHeader.
ClientIP.Val == 0x00000000u);

// Validate first three fields

/* LV : We remove this because we are a relay. Type 1 and 2 are allowed !
if (BOOTPHeader.MessageType != 1u)
break;
*/
if (BOOTPHeader .HardwareType != 1u)
break;
if (BOOTPHeader .HardwarelLen != 6u)
break;

// Throw away 10 unused bytes of hardware address,
// server host name, and boot file mame -- unsupported/not needed.
for(i = 0; i < 64+128+(16-sizeof (MAC_ADDR)); i++)

UDPGet (&0ption) ;

// Obtain Magic Cookie and wverify
UDPGetArray ((BYTE*)&dw, sizeof (DWORD));
if(dw != 0x63538263ul)

break;

// Obtain options
while (1)
{
// Get option type
if (! UDPGet (&0ption)){
break;
}
if (Option == DHCP_END_OPTION)
break;

// Get option length
UDPGet (&Len) ;

// Process option
switch(Option)
{
case DHCP_MESSAGE_TYPE:
UDPGet (&1i) ;
//DisplayString (0,"gotDHCP"); // LV debug
switch (i)
{
case DHCP_DISCOVER_MESSAGE:
//DisplayWORD (16+counter,<); // LV debug
//DisplayString (16+counter,"D"); // LV debug
DisplayString (16 ,"DHCP DISCOVERY");
LED5_I0 = 1;
LED6_I0 = 0; // A new client is there ! LED 5 on :-)
StaticVars.DHCPRemote.IPAddr.Val = AppConfig.DHCPServer.Val;
ForwardToServer (4BO0TPHeader, 1);
break;

case DHCP_OFFER_MESSAGE:

13

//DisplayWORD (16,4); // LV debug

//DisplayString (16+counter,"0"); // LV debug

DisplayString (16,"DHCP OFFER");

LED5_I0 = 0;

LED6_I0 = 1;

StaticVars.DHCPRemote.IPAddr.Val = AppConfig.DHCPServer.Val;
ForwardToClient (4BO0TPHeader, 1);

break;

case DHCP_REQUEST_MESSAGE:
//DisplayWORD (16,%); // LV debug
//DisplayString (30,"R"); // LV debug
DisplayString (16,"DHCP REQUEST");
LED5_I0 = 1;
LED6_I0 = 0;
StaticVars.DHCPRemote.IPAddr.Val = AppConfig.DHCPServer.Val;
ForwardToServer (4BO0TPHeader , 2);
break;

case DHCP_ACK_MESSAGE:
//DisplayWORD (16,4); // LV debug
//DisplayString (31,"A"); // LV debug
DisplayString (16,"DHCP ACK");
LED5_I0 = 0;
LED6_I0 = 1;
StaticVars.DHCPRemote.IPAddr.Val = AppConfig.DHCPServer.Val;
ForwardToClient (4BO0TPHeader , 2);
break;

// Need to handle these i1f supporting more than one DHCP lease
case DHCP_RELEASE_MESSAGE:
case DHCP_DECLINE_MESSAGE:
break;
default:
break;
}

break;

/*
case DHCP_PARAM_REQUEST_IP_ADDRESS:
if (Len == 4u)

{

// Get the requested IP address and see if it is the one we have on
offer.

UDPGetArray ((BYTE*)&dw, 4);
Len -= 4;
bAccept = (dw == DHCPNeztLease.Val);

}

break;

*/

case DHCP_END_OPTION:
UDPDiscard () ;
return;

}

// Remove any unprocessed bytes that we don’t care about
while (Len--)
{
UDPGet (&1) ;
}
}

UDPDiscard () ;
break;

/***

14

Function:
static void ForwardToServer (BOOTP_HEADER *Header, int type)

Summary :
Forwards a message recetved from a client to the server

Description:
This function forwards to a DHCP server message sent by a client

Precondition:
None

Parameters:
Header - the BootP header to forward

Type - 1 Discovery
2 : Request
Returns:
None

I I I I T I I I T T I I I O O I ITIIT I T,
static void ForwardToServer (BOOTP_HEADER *Header, int type)
{

BYTE i;

UDP_SOCKET_INFO *p;

/* ARP State Machine */
switch (SMState)
{
case SM_IDLE:
break;

case SM_ARP_SEND_QUERY:
LED1_I0 = 1;
SMState = SM_ARP_GET_RESPONSE;
ARPResolve (&StaticVars.DHCPRemote.IPAddr) ;
break;

case SM_ARP_GET_RESPONSE:
// See 4if the ARP reponse was successfully received
LED2_I0 = 1;
if (! ARPIsResolved (&StaticVars.DHCPRemote.IPAddr,
&StaticVars .DHCPRemote.MACAddr)) break;

SMState = SM_MESS_SEND;
// No break;

case SM_MESS_SEND:

// Set the correct socket to active and ensure that
// enough space is available to generate the DHCP response
if (UDPIsPutReady (MySocket2) < 300u)

return;

// Search through all rematining options and look for the Requested IP address
field
// Obtain options
while (UDPIsGetReady (MySocket))
{
BYTE Option, Len;
DWORD dw;

// Get option type

if (! UDPGet (&0ption))
break;

if (Option == DHCP_END_OPTION)
break;

// Get option length
UDPGet (&Len) ;

15

// Process option
if ((Option == DHCP_PARAM_REQUEST_IP_ADDRESS) && (Len == 4u))
{
// Get the requested IP address
UDPGetArray ((BYTE*) &ReqIP, 4);
reqIPnonNull = 1;
break;

}

// Remove the wunprocessed bytes that we don’t care about
while (Len--)
{
UDPGet (&1) ;
}
}

UDPIsPutReady (MySocket2) ;

//Copy of the header to forward it!
UDPPutArray ((BYTE*) &(Header ->MessageType), sizeof (Header->MessageType));
UDPPutArray ((BYTE*) & (Header ->HardwareType), sizeof (Header->HardwareType));
UDPPutArray ((BYTE#*) &(Header ->HardwarelLen), sizeof (Header->Hardwarelen)) ;
UDPPutArray ((BYTE*) & (Header ->Hops), sizeof (Header ->Hops));
UDPPutArray ((BYTE*) &(Header ->TransactionID), sizeof (Header->TransactionID));
UDPPutArray ((BYTE*) &(Header ->SecondsElapsed), sizeof (Header->SecondsElapsed));
UDPPutArray ((BYTE*) & (Header ->BootpFlags), sizeof (Header->BootpFlags));
UDPPutArray ((BYTE*) &(Header->ClientIP), sizeof (Header->ClientIP));
UDPPutArray ((BYTE*) & (Header ->YourIP), sizeof (Header->YourIP));
UDPPutArray ((BYTE*) &(Header ->NextServerIP), sizeof (Header->NextServerIP));
UDPPutArray ((BYTE#*) &(AppConfig.PrimaryDNSServer), sizeof (AppConfig.
PrimaryDNSServer)); //Fill the giadrr addr with the relay address
UDPPutArray ((BYTE*) & (Header->ClientMAC), sizeof (Header->ClientMAC));

// Set chaddr[6..15], sname and file as zeros.
for (i = 0; i < 202u; i++) UDPPut (0);

// Put magic cookie as per RFC 1533.
UDPPut (99) ;
UDPPut (130) ;
UDPPut (83) ;
UDPPut (99) ;

// Options: change %f we have a discover or a request
UDPPut (DHCP_MESSAGE_TYPE) ;
UDPPut (DHCP_MESSAGE_TYPE_LEN) ;

if (type == 1){
UDPPut (DHCP_DISCOVER_MESSAGE) ;
//DisplayString (30,"Di"); // LV debug

}
elsed
UDPPut (DHCP_REQUEST_MESSAGE) ;
//DisplayString (30,"Re"); // LV debug
}

// Option: Server identifier

UDPPut (DHCP_SERVER_IDENTIFIER) ;

UDPPut (sizeof (IP_ADDR)) ;

UDPPutArray ((BYTE*)&AppConfig.MyIPAddr, sizeof (IP_ADDR));

// Option: Router/Gateway address

UDPPut (DHCP_ROUTER) ;

UDPPut (sizeof (IP_ADDR)) ;

UDPPutArray ((BYTE#*)&AppConfig.MyIPAddr, sizeof (IP_ADDR));

/* Requested IP in field 50 ! */

if (reqIPnonNull == 1){
//DisplayString (0, "Addr Requested!"); // LV debug
//DisplayIPValue (ReqIP.Val); // LV debug
UDPPut (DHCP_PARAM_REQUEST_IP_ADDRESS);

16

}

UDPPut (DHCP_PARAM_REQUEST_IP_ADDRESS_LEN);
UDPPutArray ((BYTE#*)&ReqIP, sizeof (IP_ADDR));
reqIPnonNull = O0;

}

// No more options, mark ending
UDPPut (DHCP_END_OPTION) ;

// Add zero padding to ensure compatibility with old BOOTP relays that discard
small packets (<300 UDP octets)
while (UDPTxCount < 300u)
UDPPut (0) ;

UDPIsPutReady (MySocket2) ;
p = &UDPSocketInfo[activeUDPSocket];
p->remoteNode.IPAddr.Val = StaticVars.DHCPRemote.IPAddr.Val; // Unicast mode
Set up DHCP Server IP
for(i = 0; i < 6; i++){
p->remoteNode .MACAddr .v[i] = StaticVars.DHCPRemote.MACAddr.v[i]l; // Remote
HADDR filled in by the result of ARP
}
UDPFlush () ;
LED1_I0 = O0;
LED2_I0 = 0;
SMState = SM_ARP_SEND_QUERY; // Inconditionnal transition to the top-state (ASG
)

break;

default:
return;

}

/* K K K K KK K K K K K Kk ok K K K oK oK oK K K K K K K K K K ok K K K K 3K 3K 3K oK 0K K K K K K K K K ok ok ok K K K 0k 0K oK oK oK K K K K K K K K K Kk Kk ok ok ok ok ok ok ok

Function:
static void ForwardToClient (BOOTP_HEADER *Header, int type)

Summary :
Forwards a message received from the server to the related client

Description:
This function forwards to a client message sent by the DHCP server

Precondition:
None

Parameters:
Header - the BootP header to forward

Type - 1 Offer
2 : Ack
Returns:
None

KKK KKK K KKK K KKK K KKK K K KKK K KKK K KK K KKK K KKK K KK K K KKK K KK K K K KK K KKK K KKK KKK KKK KKK K

static void ForwardToClient (BOOTP_HEADER *Header, int type)

{

BYTE i;
UDP_SOCKET_INFO *p;

/* ARP State Machine : Useless here */
switch(SlMState)
{
case SM_IDLE:
break;

case SM_ARP_SEND_QUERY:
SMState = SM_MESS_SEND;

case SM_MESS_SEND:

17

// Set the correct socket to active and ensure that
// enough space is available to generate the DHCP response
if (UDPIsPutReady (MySocket) < 300u)
return;
p = &UDPSocketInfo[activeUDPSocket]; // Activation of the socket on local port
67 to remote port 68
p->remoteNode.IPAddr.Val = AppConfig.Br.Val; // Broadcast !
p->remotePort = DHCP_CLIENT_PORT; // Contact the client on port 68

// Copy of the MAC address of the client (from CHADDR field)
for (i = 0; i < 6u; i++){

p->remoteNode.MACAddr.v[i] = Header->ClientMAC.v[il;
}

//Print the two last part of the MAC address
/%

DisplayString (0, "MAC Addr =");
DisplayWORD (16, Header->ClientMAC.v[4]);
DisplayWORD (20, Header->ClientMAC.v[5]);

*/

//Copy of the header to forward it !
UDPPutArray ((BYTE*) &(Header ->MessageType), sizeof (Header->MessageType));
UDPPutArray ((BYTE*) &(Header ->HardwareType) , sizeof (Header->HardwareType)) ;
UDPPutArray ((BYTE*) & (Header ->HardwareLen), sizeof (Header->HardwareLen));
UDPPutArray ((BYTE*) &(Header ->Hops) , sizeof (Header->Hops));
UDPPutArray ((BYTE*) &(Header ->TransactionID), sizeof (Header->TransactionID));
UDPPutArray ((BYTE*) &(Header ->SecondsElapsed), sizeof (Header->SecondsElapsed));
UDPPutArray ((BYTE*) &(Header ->BootpFlags), sizeof (Header->BootpFlags));
UDPPutArray ((BYTE*) &(Header ->ClientIP), sizeof (Header->ClientIP));
UDPPutArray ((BYTE*) & (Header ->YourIP), sizeof (Header->YourIP));
UDPPutArray ((BYTE*) & (Header ->NextServerIP), sizeof (Header->NextServerIP));
UDPPutArray ((BYTE*) &(AppConfig.PrimaryDNSServer), sizeof (AppConfig.
PrimaryDNSServer)); //Fill the giadrr addr with the relay address
UDPPutArray ((BYTE*) &(Header->ClientMAC), sizeof (Header->ClientMAC));

// Set chaddr[6..15], sname and file as zeros.
for (i = 0; i < 202u; i++) UDPPut (0);

// Load magtic cookie as per RFC 1533.
UDPPut (99) ;
UDPPut (130) ;
UDPPut (83) ;
UDPPut (99) ;

// Options: change if we have an offer or an ack
UDPPut (DHCP_MESSAGE_TYPE) ;
UDPPut (DHCP_MESSAGE_TYPE_LEN) ;
if (type == 1){
UDPPut (DHCP_OFFER_MESSAGE) ;
//DisplayString (30,"0f"); // LV debug
}
elsed{
UDPPut (DHCP_ACK_MESSAGE) ;
//DisplayString (30,"Ac"); // LV debug
}

// Add zero padding to ensure compatibility with old BOOTP relays that discard
small packets (<300 UDP octets)
while (UDPTxCount < 300u)
UDPPut (0) ;
UDPFlush () ;

SMState = SM_ARP_SEND_QUERY; // Imconditionnal transtition to the top-state (ASG
)

break;

18

default:
return;
}
¥

#endif //#if defined (STACK_USE_DHCP_SERVER)

19

	DHCP : How does it work ?
	The protocol
	With a relay

	Description of our model (ASG)
	Implementation on the PIC
	In practice
	Our working environment
	Running illustrations

	Conclusion
	Annex : Modified files
	Annex : Code of DHCPr.c

