

Project : Capture The Flag
INGI 1131 : Concepts of Computer Languages

08/12/2008

Authors: Lamouline Laurent

 Nuttin Vincent

Professor: Van Roy Peter

Assistants: Gutierrez Gustavo

 Mejias Boriss

Introduction:

As part of lesson INGI 1131: Concepts of Computer languages, we have to implement a game

called “Capture The Flag”. This game works with two teams and the aim is, as the name

to capture the enemies’ flags and

caught and killed by other players in the fi

can die by stepping on a bomb.

before a certain time wins the match.

Architecture:

There are four major parts in our implementation: the

the game, the “environment”, the

We decided to implement each part named before with

keep the state of each structure and especially to keep track the players’ positions with this.

A secondary part is the “Game

game. It’s the representation of the abstract structure “Environment”. T

can show the game in the GUI.

Game structure and thanks to the SendToGUI procedure, we refresh

As part of lesson INGI 1131: Concepts of Computer languages, we have to implement a game

called “Capture The Flag”. This game works with two teams and the aim is, as the name

flags and bring them back at the team’s home. Players can be

players in the field. They get duplicated when they eat food, and

on a bomb. The first team to bring three enemies’ flags back to

before a certain time wins the match.

There are four major parts in our implementation: the “player” which represents a player in

, the “brain” and the “cell”.

We decided to implement each part named before with PortObject because it’s easier to

state of each structure and especially to keep track the players’ positions with this.

Game”, it’s a structure that stores as many Cells as there are in the

It’s the representation of the abstract structure “Environment”. Thanks to this part we

UI. It is the “Environment” that sends message

structure and thanks to the SendToGUI procedure, we refresh the graphical interface

Figure 1 : Execution order

As part of lesson INGI 1131: Concepts of Computer languages, we have to implement a game

called “Capture The Flag”. This game works with two teams and the aim is, as the name says,

Players can be

eld. They get duplicated when they eat food, and

ing three enemies’ flags back to its base

which represents a player in

because it’s easier to

state of each structure and especially to keep track the players’ positions with this.

it’s a structure that stores as many Cells as there are in the

anks to this part we

messages to the Cell in the

graphical interface.

Brief description of a one turns execution:

In the first message (step 1), the player asks the Environment what his neighbors are, that is the nine

cells around him. Once he receives the response (step 2), he gives it to the Brain (phase 3). Tanks to a

simple AI we implemented, the brain takes a decision in taking account of the cell’s content with a

priority order we decided (flag -> enemies -> food). Next, the brain sends its decision to the player

again (step 4) and then, the player asks the Environment to be moved to the cell the brain chooses

(step 5). In the next step (step 6), the Environment sends a message to the Cell in order to move the

player to its new position. Finally, the environment actualizes the player’s state in order to know its

new position, if it carries a flag, …

As said before, we implemented a graphical interface to visualize graphically the players’ evolutions.

When the state of the cell is changed, a procedure called “SendToGUI” changes the images

corresponding to the cells so we can see them on the screen.

Here is a brief presentation of the most important messages “travelling” between the different

components (we don’t care about the interactions with the “Game”, that is we don’t take into

account the actualization of the graphical pannel):

Player —> Environement:

- ask(nw:N1 n:N2 ne:N3 w:N4 h:N5 e:N6 sw:N7 s:N8 se:N9 posX:X posY:Y)

- movePlayer(name:Name currentX:X currentY:Y team:Team flag:Flag action:Action

eFlag:EFlag)

Player —> Brain:

- out(action:Action posX:X posY:Y nw:N1 n:N2 ne:N3 w:N4 h:N5 e:N6 sw:N7 s:N8 se:N9

team:Team flag:Flag homeX:HomeX homeY:HomeY)

Environement —> Player:

- moved(state(name:Name posX:NewX posY:NewY team:T flag:NextFlags eFlag:none))

Environment —> Cell:

- getMagicState(X)

—>: means “… sends to …”

Conclusion:

To conclude, this project was really interesting to learn more about the portobjects and Oz in

general, but despite the time spent to make a good game, it still needs adjustments, our

program is not perfect, and principally when players interact with each other.

We didn’t find a lot of things that do not work, but sometimes (very seldom) players do

incomprehensible things and we don’t understand why.

We do not pretend to choose the best solution to implement the game but taking into

account the time we had to implement such a game, it seems acceptable.

